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Abstract. The charging of small neutral and charged particles suspended in weakly ionized plasma is
investigated under the assumption that the Coulomb + image forces give rise to the ion transport in the
carrier plasma and define the rate of charging processes. Our approach is based on a BGK version of the
kinetic equation [1,2] describing the ion transport in the presence of force fields created by the particle
charge and the image force. A special type of the perturbation theory (with respect to the reciprocal
Knudsen number) is used for calculating the rate of ion deposition onto neutral and charged particles. As
the starting approximation, the free–molecule ion distribution with a floating ion flux is used for evaluating
the collision term in the Boltzmann equation. The value of the ion flux as a function of the particle size is
then fixed self–consistently from the solution of the Boltzmann equation with the approximated collision
term. The expression for the ion flux J(a) to the spherical particle of radius a is derived in the form
J = ξ(a)Jfm, where Jfm is the free–molecule flux (no carrier plasma) and ξ(a) is a correction factor taking
into account the ion–molecular collisions. The latter is shown to never exceed unity and to depend weakly
on the particle–ion interaction.

PACS. 36.40.Wa Charged clusters – 82.30.Fi Ion-molecule, ion-ion, and charge-transfer reactions –
92.60.Mt Particles and aerosols

1 Introduction

Charged aerosol particles have attracted the attention of
scientists and technologists for already more than a cen-
tury [3–8]. Not to mention such remarkable phenomena
like thunderstorms, linear and ball lightnings, formation
of crystal–like structures in dusty plasma [9–12] charged
aerosols play considerable role in the dynamics of par-
ticle formation in the atmosphere [5,13,14]. Not less re-
markable is the role of charged particles in modern aerosol
technologies and aerosol measurements [7,8,15–19]. These
circumstances have motivated the permanently growing
interest in the studies of aerodisperse systems wherein the
aerosol particles are suspended in a plasma.

The kinetics of particle charging demands an answer
to the question, how effective are the elementary charging
processes? This problem had been considered by numer-
ous authors theoretically [3,5,6,20–28] and experimen-
tally [4,7,8,14,29–31]. More or less reliable results are
found only for small Kn (Kn is the Knudsen number
equal to the ratio of the ion mean free path to the parti-
cle size) [3,6,20] when the ion diffuses in the continuum
regime. Meanwhile, small (Kn � 1) and transition par-
ticles (Kn ∝ 1) are of most interest, especially for the
Physics of Atmospheric Aerosols. The attempts to con-
sider the free–molecule and the near free–molecule regimes
can be found e.g. in references [21,23–27]. Analytical re-
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sults are known for small neutral metallic particles. For
charged particles there exist rather cumbersome expres-
sions for the charging efficiencies [21,26]. No reliable re-
sults are found for dielectric particles. In references [26,27]
attempts had been made to take into account the ion col-
lisions with the molecules of the carrier gas.

In this paper we derive rather simple expressions for
the charging efficiencies of small metallic particles, which
are valid in the near free–molecule regime (large Kn). The
total flux of ions onto the particle surface is expressed
in terms of the product of the free–molecule flux with a
correction factor taking into account the collisions of ions
with the carrier gas molecules.

The plasmosols are characterized by three nondimen-
sional groups:
• the Knudsen number Kn = l/a, i.e., Kn is the ratio

of the ion mean free path l to the particle size a. In
what follows we consider only spherical particles, so
a is the particle radius. This parameter characterizes
the regime of ion transport toward or outward from a
disperse particle;

• the group qQe2/akT , where e is the electron charge,
q, Q are the ion and particle charges respectively (in
units of e). T is the temperature in K and k is the
Boltzmann constant. This parameter is the ratio of
the particle electrostatic energy to the mean kinetic
energy of ions. When qQe2/akT ∝ 1 the electrostatic
interaction plays an important role in the processes of
particle–ion interaction;
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• the third group q2e2/λikT characterizes the electric
state of the carrier plasma, i.e., the relative role of the
Coulomb interaction in the charge transport processes.
Here λi is the mean interion distance.

In what follows we consider a weakly ionized carrier
plasma containing small dispersed particles, i.e., we focus
on the case a/l � 1, qQe2/akT ∝ 1, and q2e2/λikT � 1.
This case suits very well the conditions of the Earth atmo-
sphere, wherein the Knudsen number varies over a wide
range (from 1 to 100) and e2/akT ∝ 10 for nanomet-
ric particles. This combination of parameters allows us to
consider a pair: a suspended particle + an ion moving in
a neutral carrier gas. Now our task is formulated as fol-
lows: to find the ion flux toward the particle (also neutral
or charged), once the concentration of ions is known far
away from the particle.

The most successful semi–phenomenological theory of
the particle charging process had been presented in ref-
erences [20,22]. The semi–phenomenological approach of
these papers combines the solution of the diffusion equa-
tion in the external field with further matching the diffu-
sion and free–molecule fluxes at a distance of the order of
the ion mean free path. Although this approach describes
the existing experimental data it cannot be considered as
a microscopic theory of particle charging.

Another theory [26] starts with the free–molecule ap-
proximation corrected by a straightforward account of
three–body effects. This approach also agrees satisfactory
with the experimental data. On the other hand, the so-
lution of the three–body problem cannot be performed
analytically and some simplifications were done whose re-
liability leaves room for doubt. Moreover, it is absolutely
clear that the most perfect approach should rely upon a
kinetic equation.

An attack in this direction had been attempted in ref-
erence [27]. The authors applied a perturbation theory
with respect to the reciprocal Knudsen number. The ide-
ology of our approach is similar to that presented in this
paper, but the version of the perturbation theory proposed
by us is the principal difference.

The idea of our approach is extremely simple. We split
the ion velocity–coordinate distribution into two terms f0
and f1, the first of which does not contribute to the total
flux J whereas the second one does, f = f0 − Jf1. Here
J is the total flux of the ions. The Boltzmann equation
for a single ion moving in the carrier plasma is linear in
f and can be rewritten as f = Kf , with K being a lin-
ear operator. Then we find J = (Kf0) − J(Kf1), where
the parentheses stand for a linear operation producing J
from f , (f) = J . Now J = (Kf0)/[1 + (Kf1)]. Section 2
formulates this general approach.

Thus the expression for J is a good starting point
for any approximations. In this paper we use the free–
molecule approximation for f0 and f1. The details are ex-
plained in Section 3.

The final expression for J derived in Section 4 is then
used in Sections 5 and 6 for calculating the efficiencies
of free condensation, the capture of polar molecules by
charged particles, and the charging of small particles.

Because we focus on the dependence of J on the parti-
cle size, it is more convenient to rearrange the dimension-
less groups mentioned above and to introduce

ã = a/l = Kn−1 and
qQe2

lkT
=
lc
l
, (1)

where lc = qQe2/kT is the Coulomb length, a distance
at which the energy of the Coulomb interaction becomes
comparable to the ion thermal energy. At T = 300 K and
q = Q = 1 the Coulomb length is comparable with the
ion mean free path in the atmosphere at normal pressure.
Indeed, lc = e2/kT = 5.565× 10−6 cm ≈ l.

2 Basic equations

In this section we discuss the general statement of the
problem of the particle–ion interaction and the approxi-
mate approach.

The description of the ion transport toward a spheri-
cal particle in the transition regime requires the solution
of the steady–state Boltzmann kinetic equation which is
linear in the ion distribution f(r,v),

vi
∂f

∂xi
− 1
m

∂U

∂xi

∂f

∂vi
+
f

τc
= R[f ]. (2)

Here f(r,v) is the ion distribution over coordinates and
velocities,m is the ion mass, U is the potential of an exter-
nal field, and R[f ] is the collision term (a linear functional
of f). The collision time τc is defined as 1/τc = R[1]. The
convention on the summation over repeating indexes is
adopted.

In what follows we will consider only spherical parti-
cles. The potential U is then a function of r = |r| and
the ion distribution depends only on three variables, the
ion radial coordinate r, absolute ion velocity v = |v| and
µ = cos θ, with θ being the angle between the directions
of r and v.

In spherically symmetric systems another set of vari-
ables is more convenient. Namely, instead of r, v, µ we in-
troduce r, E, L, with

E = mv2/2+U(r), L = m|[v×r]| = mvr
√

1 − µ2 (3)

being the total ion energy and the ion angular momentum
respectively. In these variables the Boltzmann equation
takes the form:

svr
∂fs

∂r
+
fs

τc
= R[f ], (4)

where

vr =

√
2
m

(
E − U(r) − L2

2mr2

)
=

1
mr

√
L2(r) − L2 (5)

is the radial ion velocity, s = ±1 is an auxiliary variable
defining the direction of ion motion along the radial co-
ordinate (s = −1 corresponds to the direction toward the
particle), and

L(r) =
√

2mr2(E − U(r)). (6)
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The ion flux toward the particle is expressed in terms of
f as follows:

J = −
∫

d3v

∫
(v dS)f(r,v). (7)

The integrals on the right–hand side (rhs) of this equation
are taken over all v and the surface of a sphere of radius r.
The sign “−” in the definition of the flux makes J positive.
In spherical coordinates equation (7) is rewritten as

J = −8π2r2
∞∫
0

v3dv

1∫
−1

f(r, v, µ)µdµ. (8)

The rule for replacing the variables (r, v, µ) −→ (r, E, L)
readily follows from definition (3) of the variablesE and L,

d3v −→ π

m2r

∑
s

dEdL2√
L2(r) − L2

. (9)

The restrictions on the intervals of integration over E
and L2 are defined by two conditions, L2 ≤ L2(r) and
L2(r) ≥ 0. The latter one is equivalent to E ≥ U(r). In
what follows we do not specify the limits of integrations
except for the cases, where they play a decisive role.

The expression for the flux J in r, E, L variables looks
as follows:

J = −4π2

m3

∑
s

s

∫
dE
∫

dL2fs(r, E, L). (10)

Now we propose a very effective and transparent trick
helping much in the analysis of many kinetic prob-
lems including the present one. The idea is simple. The
Boltzmann equation (2) is just a linear equation of the
form L̂f = R̂f , where L̂ is the differential operator on
the left–hand side (lhs) of equation (2) and R̂ is a linear
operator on its right–hand side (rhs). The formal solution
to equation (2) is

f = L̂−1R̂f. (11)

Let now fJ be a solution to the Boltzmann equation with
a floating (not yet fixed) flux J . We split fJ into two terms

fJ = f (0) − ξ(a)f (1),

where

ξ(a) =
J

Jfm
, (12)

Jfm is the free–molecule ion flux, and the functions f (i)

(i = 0, 1) are independent of J . The correction factor ξ(a)
defines the changes in the ion flux due to ion–molecule
collisions. The ratio ξ(a) = J/Jfm can be then found from
equation (11) as

ξ(a) =
A(0)

1 +A(1)
, (13)

where

A(i) =
4π2

m3Jfm

∑
s

∫
dE
∫

dL2L̂−1R̂f (i)
s (a,E, L). (14)

This very general expression is a good starting point for
approximations: any reasonable approximate expression
for f can be used.

We conclude this section by formulating the boundary
condition to equation (4). We assume that no ions escape
from the particle surface,

f1(a,E, L) = 0. (15)

Because the total flux J is independent of r, equation (10)
can be rewritten as

J =
4π2

m3

∫
dE
∫

dL2f−1(a,E, L). (16)

3 Approximations

In this section we discuss the form of the collision term
and the approximate ion distribution function.

3.1 Collision term

In order to find the form of the functional R[f ] on the rhs
of equations (2, 4) a two–body problem in the external
field should be solved. The standard form of the collision
term cannot be used, for the spatial scale of changing the
external potential (of the order of a) is shorter than the
ion mean free path. We therefore use the simplest possible
form of the collision term,

R[f ] =
1
τc
n(r)M(r, E, L)Z(r), (17)

where

n(r) =
π

m2r

∑
s

∫
dE
∫

dL2√
L2(r) − L2

fs(r, E, L) (18)

is the ion density and

M(r, E, L) =
(
βm

2π

)3/2

e−β(E−U(r)) (19)

is the Maxwellian (β = 1/kT ). The normalization fac-
tor Z(r) takes into account the fact that the bound ion
states are empty. We thus assume that the last collision
that ion experiences right before attaching the particle
surface takes place at a distance much exceeding the ra-
dius of external forces.

The normalization condition

Z(r)π
m2r

∞∫
max(0,U(r))

dE

L2(r)∫
0

dL2√
L2(r) − L2

M(r, E, L) = 1

(20)
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defines the factor Z(r),

Z(r) =
√
π

2Γ (3/2, |min(0, βU(r))|) . (21)

Here Γ (α, x) =
∫∞

x sα−1e−sds is the incomplete gamma–
function.

Our next approximation concerns τc. We assume that
l = vτc = const or

τc

√
2
m

(E − U(r)) = const. (22)

This approximation means that the ion mean free path l
remains a constant rather than the collision time τc, as is
commonly accepted [1,2]. In what follows we put l = 1,
i.e., all distances are measured in units of l.

After these approximations the Boltzmann equation
acquires the form:

s

√
1 − L2

L2(r)
∂fs

∂r
+ fs = n(r)M(r, E, L)Z(r). (23)

3.2 Free–molecule distribution

The steady–state free–molecule distribution satisfies the
equation

s

√
1 − L2

L2(r)
∂fs

∂r
= 0. (24)

The most general form of the solution to equation (24) is

fs(r, E, L) = Bs(E,L)θ(L2(r) − L2) (25)

with θ(x) being the Heaviside step–function. The function
Bs(E,L) is still arbitrary. Its dependence on E is defined
by the condition that fs ∝ e−βEθ(E) as r −→ ∞. The
factor θ(E) excludes the bound states of ions, for they are
not present far away from the particle. The dependence
on L follows from the boundary condition (15),

Bs(E,L) = Ce−βEθ(E)[θ(L − La) + ξ(a)δs,−1θ(La − L)],
(26)

where C is the normalization constant,

C = n∞

(
βm

2π

)3/2

, (27)

δi,k is the Kronecker delta, and ξ(a) = J/Jfm is the ra-
tio of the total flux J to the free–molecule flux J0 (see
Eq. (12)),

Jfm = C
4π2

m3

∫
L2

ae
−βEdE. (28)

This results follows from equation (16) on substitution of
the distribution given by equations (25, 26) and putting
ξ(a) = 1. The angular momentum La separates the ion
trajectories crossing the particle surface (L < La) from
those passing by the particle (L > La). It is easy to see

that the distribution in this form gives the correct total
ion flux (equal to J) and contains no outgoing ions at
r = a. Indeed, the first term on the rhs of equation (26)
is independent of s and thus does not contribute to the
flux at all (see Eq. (10)). The integration of the second
one removes J0 from the denominator of ξ(a). The factor
θ(L − La) in the first term does not permit trajectories
crossing the point r = a. Hence f1(a) = 0.

4 Solution of kinetic equation

In order to find the flux we must first calculate the ion
density profile, then solve equation (23) with the collision
term found in the free–molecule approximation, and then
calculate the integrals in equation (13). We will follow this
plan.

4.1 Ion density profile

Equations (18, 25, 26) allow us to find the approximate
ion density profile na(r),

na(r) = n∞[2F (r) + ξ(a)G(r)], (29)

where n∞ is the ion density far away from the particle,

F (r) =
π

m2r

(
βm

2π

)3/2
∞∫

E0

e−βEdE

L2(r)∫
L2

a

dL2√
L2(r) − L2

,

(30)
and

G(r) =
π

m2r

(
βm

2π

)3/2 ∞∫
E0

e−βEdE

L2
a∫

0

dL2√
L2(r) − L2

.

(31)
Here the energy E0 is defined by the condition L2

a ≥ 0.
It is easy to find P (r) = F (r) +G(r),

P (r) =
e−βU(r)

2Z(r)
, (32)

where Z(r) is given by equation (21). The approximate
ion density profile is thus

na(r) = n∞ [2F (r) + ξ(a)(P (r) − F (r))] . (33)

Let us find F (r). The integration over L2 in equation (30)
gives

F (r) =
1√
π

∞∫
βE0

dx e−x

√
x− a2

r2
Ψ − βU(r). (34)

In most practically important cases the function L(r)
reaches its minimum at r∗ > a. The condition ∂rL

2
r = 0
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rewritten as

r∗
∂U

∂r
|r=r∗ =

L2(r∗)
mr2∗

(35)

defines its position as a function of a and E.
The factor Ψ depends on x and a via r∗ and explicitly,

Ψ =
r2∗
a2

(x− βU(r∗)) =
βL2

a

2ma2
. (36)

The free–molecule flux Jfm is expressed in terms of Ψ as
follows:

Jfm = πa2n∞vT

∞∫
x0θ(x0)

e−xΨdx, (37)

where vT =
√

8kT/πm is the thermal velocity and x0 is
the root of the equation Ψ(x0) = 0.

4.2 Ion distribution

According to the boundary condition to the kinetic equa-
tion (15) the ion flux J can be expressed in terms of
f−1(a,E, L) alone, so here we solve equation (23) for the
component f−1 with the approximate collision term con-
taining the ion density profile from equation (33),

−
√

1 − L2

L2(r)
∂f−1

∂r
+ f−1 = na(r)M(r)Z(r). (38)

Instead of r we introduce the variable

σ(r) =

r∫
a

L(r′)dr′√
L2(r′) − L2

. (39)

Then the solution to equation (38) is readily found,

f−1(a,E, L) =

∞∫
a

e−σ(r′)na(r′)Z(r′)M(r′)
L(r′)dr′√
L2(r′) − L2

(40)
or, in a more concise form:

f−1(a,E, L) =

∞∫
0

e−σna(r(σ))Z(r(σ))M(r(σ))dσ, (41)

where r(σ) is the solution of the equation σ(r) = σ.

4.3 Flux

Now we are ready to find the ion flux. Applying equa-
tion (16) to both sides of equation (40) gives ξ(a) in the
form of equation (13) with

A(0)(a) =
8π2n∞
m3Jfm

∫
dEdL2

×
∞∫
0

e−σF (r(σ))M(r(σ))Z(r(σ))dσ (42)

and
A(1)(a) =

1
2
A(0)(a) − 1

2
. (43)

In deriving equation (43) we used the identity

4π2n∞
m3Jfm

∫
dEdL2

∞∫
0

e−σP (r(σ))M(r(σ))dσ =
1
2
. (44)

In most cases of interest the integral appearing in equa-
tion (40) cannot be performed analytically. Still a very
simple approximation is accessible. Its idea relies upon
the fact that the term L2 on the rhs of equation (40) can
be ignored in the limit of small a. Then

r(σ) = σ + a. (45)

Indeed, σ ∝ 1 contributes to the integral in equation (39)
whereas L ∝ La � Lr.

Equation (45) simplifies considerably the expression
for Q(a). The integrations over L and E produce the mul-
tiplier J0 and we have

A(0)(a) = 2

∞∫
0

e−σF (σ + a)Z(σ + a)eβUσ+a)dσ. (46)

In deriving this equation we use the fact that the product
e−βUM ∝ e−βE (see Eq. (19)) is independent of r.

Now the problem of calculating the flux J reduces to
the evaluation of the integral appearing in equation (42)
or equation (46) for various potentials.

5 Nonsingular potentials

In this section we consider the molecular fluxes onto the
particle surface assuming that the interaction potentials
are nonsingular, i.e., they remain finite at r = a. Most
widespread potentials are nonsingular, e.g., the Coulomb
potential or the interaction of polar molecules with a
charged particle. The common feature of these potentials
is their monotonic behavior that ensures the minimum of
L(r) locates at r = a. The consideration of nonsingular
potentials is much simpler than singular ones having a
singularity at the particle surface. Examples of such po-
tentials are also well–known, e.g., the image force poten-
tial which, as we will see below, plays an important role
in considering the particle charging.

Two simplest examples illustrate our approach: the
free condensation (no potential, U = 0) of molecules onto
the particle surface and the capture of polar molecules by
charged particles.

5.1 Free condensation

Let us first consider the free condensation, U(r) = 0. The
free–molecule flux J0 is readily found from equation (28),

Jfm = J0 = πa2vTn∞. (47)
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Next, L(r) =
√

2mEr2 and

σ(r) =
√

2mE

r∫
a

r′dr′√
2mEr′2 − L2

=

√
r2 − L2

2mE
−
√
a2 − L2

2mE
. (48)

It is easy to invert the function σ(r),

r(σ) =
√
σ2 + 2σaµ+ a2. (49)

Here we returned to the variable µ = µ(L) =
√

1 − L2/L2
a

(see Eq. (3)).
The factor Ψ = x and r∗ = a, so the function F (r) has

an especially simple form (see Eq. (34)):

F (r) =
1
2

√
1 − a2

r2
. (50)

Then,

F (r(σ)) =
1
2

√
σ2 + 2µaσ

σ2 + 2µaσ + a2
. (51)

Equation (42) reduces to

A(0)(a) = 2a

1∫
0

µdµ

∞∫
0

e−as

√
s2 + 2µs

s2 + 2µs+ 1
ds. (52)

Equations (13, 52) give the full solution to the problem.
The approximation equation (43) simplifies the expression
for A(0),

A(0) = a

∞∫
0

e−as

√
s2 + 2s
s+ 1

ds. (53)

The correction factor ξ(a) = J/J0 as the function of par-
ticle size a (measured in units of the ion mean free path l)
is shown in Figure 1 (curve 1). Curves 1 and 1’ reproduce
the results of the present paper. In calculating curve 1’
we used the approximation (45) for r(σ). Curve 2 is the
semi–empirical formula for the correction factor [22] that
reproduces well the experimental data on condensation
efficiencies for vapors of many substances. Even at suffi-
ciently large particle sizes (a = 0.5) the deviation of the
correction factor found in the free–molecule regime from
the semi–empirical result is not very large.

5.2 Potential driven condensation

If the potential U(r) has no singularity at r = a and
behaves monotonously, then the expressions for Jfm and
F (r) can be considerably simplified. In this case the an-
gular momentum L(r) reaches a minimum at the parti-
cle surface, r∗ = a. The function Ψ reduces to Ψ(x) =
x − βU(a) and equation (37) reproduces the well–known
results for the free–molecule flux,

Jfm = J0e
−βU(a) (54)
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Fig. 1. Condensation of neutral molecules on a neutral parti-
cle. The nondimensional correction factor ξ(a) is shown as the
function of particle radius a measured in units of mean free
path l. Curve 1: the correction factor in free–molecule limit
(Eqs. (13, 52)). Curve 1’ displays the same function found
with the use of approximation (45). Curve 2 reproduces the
semi–empirical size dependence of the correction factor from
reference [22].

for repulsive potentials (U(a) > 0) and

Jfm = J0[1 + β|U(a)|] (55)

for attractive potentials (U(a) > 0).
The function F (r) is expressed in terms of the incom-

plete gamma–function Γ (α, x) =
∫∞

x sα−1e−sds. Tedious
but very straightforward algebra again gives different re-
sults for repulsive and attractive potentials.

For repulsive potentials we have,

F (r) =
1√
π

√
1 − a2

r2
e−βU(a) exp

(
βU(a) − βU(r)

1 − a2/r2

)

× Γ

(
3
2
,
βU(a) − βU(r)

1 − a2/r2

)
. (56)

For attractive potentials the result changes,

F (r) =
1√
π

√
1 − a2

r2
exp

(
β|U(r)| − β|U(a)|(a2/r2)

1 − a2/r2

)

× Γ

(
3
2
,
β|U(r)| − β|U(a)|(a2/r2)

1 − a2/r2

)
. (57)

5.3 Condensation of polar molecules

The above theory can be readily applied to the calcu-
lations of the flux of polar molecules toward a charged
particle. Although the interaction potential depends on
the orientation of the polar molecule we can ignore this
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dependence and consider the dipoles directed toward the
particle center. In this case the interaction potential is,

U(r) = −de
2

r2
, (58)

where d is the distance between the opposite charges of
the polar molecule. There are strong grounds for using
equation (58). The point is that the dipole reorientation
time τr is much shorter than the time of flight, the distance
is of the order of the particle size τa ∝ a/vT . Indeed,
the dynamics of the dipole rotation is governed by the
equation of motion Iφ̈ = F , where I ∝ md2 is the moment
of inertia of the molecule, m is its mass and the rotating
moment F ∝ e2d2/a3. The angular acceleration φ̈ ∝ 1/τ2

r .
Hence, τ2

r ∝ a3m/e2 and τ2
r /τ

2
a ∝ amv2

T /e
2 ∝ akT/e2 ∝

a/lc � 1.
Next, it is pertinent to notice that the combination

[β|U(r)| − β|U(a)|(a2/r2)]/(1 − a2/r2) in equation (57)
is identically zero for the potentials U(r) ∝ 1/r2. The
function F (r) (see Eq. (57)) in this case coincides with
that for free condensation (Eq. (49)). The final result thus
looks as follows:

J = πa2vTn∞

(
1 +

βe2d

a2

)
2A(0)(a)

1 +A(0)(a)
, (59)

where the function A(0)(a) is given by equation (53).

6 Charging of particles

In order to use equation (42) for calculating the ion flux
one first finds r∗ and Ψ (see Eqs. (35, 36)). Then the func-
tion F (r) found from equation (34) is substituted into
equations (42) or (46). We use this scheme for calculating
the rate of free condensation (no external potential) and
the rate of charging a neutral or a charged particle.

6.1 General consideration

Let us consider the ion flux toward a charge particle. The
incident ion interacts with the particle via the Coulomb
and the image potentials,

U(r) = ±qQe
2

r
− q2e2

2a
a4

r2(r2 − a2)
, (60)

where Q and q are the charges of the particle and the
ion in units of e (Q and q are nonnegative integers, the
upper sign (here “+”) refers to the Coulomb repulsion).
On introducing ζ = q/Q reduces equation (35) for r∗ to
the form:

q2e2

2a

[
a4

(r2∗ − a2)2
± ζa

r∗

]
= E. (61)

Although this equation cannot be resolved with respect to
r∗ analytically, it allows one to conclude that

r∗ = aρ(x/γ), (62)

where we introduced x = βE, γ = βq2e2/2a. The function
ρ = ρ(u) satisfies the equation

u =
1

(ρ2 − 1)2
± ζ

ρ
. (63)

It is easy to find that

βU(r∗) = γ

(
− 1
ρ2(ρ2 − 1)

± 2ζ
ρ

)
(64)

and

Ψ = γρ2

[
x

γ
+
(

1
ρ2(ρ2 − 1)

∓ 2ζ
ρ

)]
. (65)

Because the function Ψ depends on the combination x/γ it
is reasonable to introduce the variable u = x/γ in the in-
tegrand of equation (37). This step reduces the expression
for Jfm to

Jfm = J0γ
2

∞∫
u0θ(u0)

e−γuψ(u)du, (66)

where

ψ(u) = ρ2(u)
[
u+

1
ρ2(u)(ρ2(u) − 1)

∓ 2ζ
ρ(u)

]
(67)

and u0 is the zero of ψ(u).
The function F (r) can be found from equations (34,

65) in the form F (r) = γ3/2ϕ(r/a, γ) with

ϕ(s, γ) =
1√
π

∞∫
u0

du e−γu

√
u+

1
s2(s2 − 1)

∓ 2ζ
s

− ψ(u)
s2

,

(68)
where u0 is the positive zero of the function ψ(u) or 0 if
the function ψ(u) has no positive zeros.

We conclude this paragraph by deriving a very useful
identity. Let us differentiate both sides of equation (67)
over u and apply equation (63). We get

dψ
du

= ρ2(u). (69)

This remarkable identity helps much in simplifying the
final expressions for Jfm and F (r).

In what follows we apply the last five equations for
finding Jfm, F (r), and A(0) from equations (66, 34, 46).
Our final goal is to restore the correction factor ξ(a) =
J/Jfm,

ξ(a) =
J

Jfm
=

2A(0)

1 +A(0)
. (70)

6.2 Charging of neutral particles

A neutral metallic particle interacts with ions via image
forces whose potential is always attractive (Q = 0 and
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ζ = 0 in equations (61–65). Equation (63) is then solved
analytically to give

ρ2(u) = 1 +
1√
u

(71)

and
ψ = u+ 2

√
u. (72)

Equations (66, 72) allow us to reproduce the well–known
result for the free–molecule flux [21],

Jfm = πa2vTn∞γ2

∞∫
0

e−γu (u+ 2
√
u)du

= πa2vTn∞

(
1 +

√
πβq2e2

2a

)
. (73)

The function F (r) is readily found from equations (34, 72)
in the form F (r) = γ3/2ϕ(r/a, γ) with

ϕ(s, γ) =
1√
π

∫
du e−γu

√
u+

1
s2(s2 − 1)

− u+ 2
√
u

s2
.

(74)
Equation (46) gives

A(0)(a) = a
√
πγ3/2

∞∫
0

e−asϕ(s+ 1, γ)
Γ (3/2, ν(s))

e−ν(s)ds, (75)

where
ν(s) =

γ

s(s+ 2)(s+ 1)2
.

Now combining equations (13, 43) with the above two
equations gives the ion flux. The result of calculations are
presented in Figure 2.

6.3 Opposite polarities

In this case equation (63) has the form

u =
1

(ρ2 − 1)2
− ζ

ρ
(76)

and cannot be solved analytically. It is important, how-
ever, that the function u(ρ) has a zero at ρ = ρζ . As we
will see this fact plays a very important role.

The function ψ has the form in this case

ψ(u) = ρ2(u)
[
u+

1
ρ2(u)(ρ2(u) − 1)

+
2ζ
ρ(u)

]
. (77)

Now, let us integrate by parts the rhs of equation (66) and
introduce the variable ρ instead of u. Equation (69) allows
then to simplify the expression for Jfm,

Jfm

J0
= γψ(0) + γ

∫ ρ0

1

e−γu(ρ)

(
4ρ3

(ρ2 − 1)3
− ζ

)
dρ (78)
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Fig. 2. Charging of a neutral particle. Shown is the nondi-
mensional correction factor ξ(a) as a function of particle size
(in units of mean free path). Curve 1, q = 0 (neutral particle
+ neutral molecule), Curve 2–4 correspond to q = 1, 2, 3 re-
spectively. It is seen that the intensity of the interaction does
not strongly affect the curves.

Table 1. The coefficients of expansion of J(a) (Eq. (79)) and
the value of ρ0 (Eq. (78)).

q Q a1 a0 a−1 ρ0

1 1 3.7996 2.2203 −2.1065 1.4901

1 2 6.6158 1.8214 −0.6241 1.3496

2 1 2.2288 2.8318 −7.3286 1.6828

where the function u(ρ) is given by equation (76), ρ0 is
the root of the equation u(ρ) = 0. The values of ρ0 and
ψ(0) depend on the ratio ζ = q/Q.

At large γ the integral on the rhs of equation (66) can
be easily estimated, for small u ∝ 1/γ contributes to the
integral. We have

Jfm = πa2vTn∞(a1γ + a0 + a−1γ
−1 . . .). (79)

The coefficients ai and the values of the root of u(ρ)
(Eq. (76)) are collected in Table 1 for three combinations
of charges q = 1 Q = 1, q = 1 Q = 2, q = 2 Q = 1. The
results for q = 2 Q = 2 are identical to those for q = 1
Q = 1. The dependence of Jfm on q and Q enters also via
γ (see the definition after Eq. (62)).

In calculating Q(a) we use the approximation (45).
Again, the function F (r) can be found from equations (34,
64). Now the flux J is restored from equations (13, 46).
The results of the numerical calculations are presented in
Figure 3.

6.4 Similar polarities

The potential

U(r) =
qQe2

r
− q2e2

2a
a4

r2(r2 − a2)
(80)
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Fig. 3. Charging of a charged particle of charge Q by ions
of opposite polarity (charge q). Shown is the nondimensional
correction factor ξ(a) as a function of particle size (in units of
mean free path). Curves 1–3 refer to the charge combinations
q = 1 Q = 1, q = 1 Q = 2, and q = 2 Q = 1. It is seen that the
intensity of the interaction does not strongly affect the curves.

describes the interaction of like–charged ion and particle.
It contains the Coulomb repulsion and the attraction due
to the image forces.

For the potential equation (80), equations (63, 66, 67)
look as follows:

u =
1

(ρ2 − 1)2
+
ζ

ρ
. (81)

The function u(ρ) has no zeros

ψ(u) = ρ2(u)
[
u+

1
ρ2(u)(ρ2(u) − 1)

− 2ζ
ρ(u)

]
(82)

and

Jfm = πa2n∞vT γ
2

∞∫
u0

e−γuψ(u)du. (83)

The interval of integration u > u0 is determined by the
condition ψ(u) ≥ 0.

Differentiating both sides of equation (82) over u and
using equation (81) again yields ψ′ = ρ2. On integrat-
ing by parts the rhs of equation (83) and introducing the
variable ρ instead of u yields a more convenient expression
for Jfm,

Jfm

J0
= γ

∫ ρ1

1

e−γu(ρ)

(
ζ +

4ρ3

(ρ2 − 1)3

)
dρ, (84)

where the function u(ρ) is given by equation (81), ρ1 is
the root of the equation ψ(u(ρ)) = 0.

At large γ the integral on the rhs of equation (84) can
be easily estimated, for small u−u0 ∝ 1/γ � 1 contributes
to the integral.
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Fig. 4. Charging of a charged particle (charge Q) by ions of
similar polarity (charge q). Flux of ions of charge q to the simi-
larly charged particle of charge Q. Shown is the nondimensional
correction factor ξ(a) as a function of particle size (in units of
mean free path). Curves 1–3 refer to the charge combinations
q = 1 Q = 1, q = 1 Q = 2, and q = 2 Q = 1. It is seen that the
intensity of the interaction does not strongly affect the curves.

Table 2. The coefficients of expansion of J(a), the exponent
u0, (Eq. (85)), and the value of ρ1 (Eq. (84)).

q Q b0 b−1 r1 u0

1 1 2.6165 −1.409 1.6179 1.001

1 2 2.0378 −0.4687 1.4275 2.3296

2 1 3.5426 −36813 1.8822 0.4203

As u −→ u0 the function ρ(u) approaches ρ1 and

Jfm = πa2vTn∞e−u0γ(b0 − b−1γ
−1 . . .). (85)

The coefficients bi and the values of ρ1 and u0 are pre-
sented in Table 2 for three combinations of charges q = 1
Q = 1, q = 1 Q = 2, q = 2 Q = 1. The results for q = 2
Q = 2 are identical to those for q = 1 Q = 1. The de-
pendence of Jfm on q and Q enters also via γ (see the
definition after Eq. (62)).

Figure 4 presents the results of the numerical calcula-
tions of the correction factor for a similarly charged par-
ticle and an ion.

6.5 Comparison with experiment

We compared the results of our calculations for the effi-
ciency of particle charging with the experimental data in
reference [29]. Figure 5 (solid line) clearly demonstrates
that the first–order calculation does not give a satisfac-
tory agreement with the experimental data. There could
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Fig. 5. Charging of a neutral particle. Shown is the enhance-
ment factor (J/J0) for charging neutral particles. The experi-
mental data in reference [29] are compared with the result of
our theoretical calculation presented in Section 6.3 (solid line).
The other three lines demonstrate the effect of diminishing the
ion concentration at distances r = a + εl of the order of the
mean free path from the particle surface. Calculations are done
for ε = 10, 4, 1.

be two reasons for this:

(i) the approximation already stops working at Kn ≈ 10,
(ii) the dielectric permeability εd = 6 is not high enough

to reproduce the results for metallic particles (our the-
ory works only at εd = ∞).

Here we demonstrate explicitly that the first reason is re-
sponsible for the theory giving the excessive charging ef-
ficiencies and outline a route for improving the situation.

The ion flux onto the particle can always be written as

J = α(a)n∞, (86)

i.e., the flux is proportional to the ion density far away
from the particle. If we calculate the efficiency α(a) ap-
proximately, let us say, α ≈ αfm, then n∞ should be re-
placed by nε = n(a+ εl), where ε ∝ 1 is a constant. How-
ever, the ion density at the distances from the particle
surface of the order of mean free path can differ consider-
ably from n∞ due to the diffusion resistance of the carrier
gas [20].

Let us rewrite equation (86) in the form

J = αfm(a)nε. (87)

Our next step assumes applying the diffusion equation for
finding the ion density nε = n(a+ εl). As n(r) we use the
solution to the diffusion equation with fixed flux J ,

n(J)(r) = e−βU(r)


n∞ − J

4πD

∞∫
r

eβU(r′) dr
′

r′2


 . (88)

Then we obtain the equation for J ,

J = αfmn
(J)(a+ εl). (89)

On solving this equation gives,

J = αn∞ (90)

with

α

αfm
=

e−βU(a+εl)

1 +
αfme

−βU(a+εl)

4πD

∞∫
a+εl

eβU(r′) dr
′

r′2

. (91)

We can go even further and rewrite equation (89) in the
form:

J = αfm1n
(J)(a+ εl), (92)

where αfm1 is the charging efficiency found for the near
free–molecule regime. In this case the value of ε > ε is
expected to grow (compared to the free–molecule regime).
This very version of equation (91) was used for calculating
the curves plotted in Figure 5.

7 Discussion and conclusion

In this paper we have analyzed the kinetics of charg-
ing tiny particles suspended in a weakly ionized carrier
plasma. Our approach relies upon a perturbation solution
of the Boltzmann equation. Instead of attempting to con-
struct an expansion of the total ion flux with respect to
the smallness parameter (the reciprocal Knudsen number
in our case) we use a self–consistency procedure for fixing
the value of the flux. This step has allowed us to develop
the perturbation theory separately for the numerator and
denominator of the final exact expression for the flux (see
Eq. (13)).

Another important step that has effectively simplified
the solution of the Boltzmann equation and the derivation
of the expressions for the free–molecule ion fluxes is the use
of the set of variables (r, E, L2) instead of the traditional
one (r, v, µ). This very step has allowed us to construct
the expression for the free–molecule distribution function
(Eqs. (25, 26)) satisfying the boundary condition (15) and
find a very simple and effective method for calculating the
free–molecule fluxes and corrections due to ion–molecule
collisions.

The final results (the ion fluxes) are presented in the
form J = Jfmξ(a). We have expressed both multipliers on
the rhs of this equation in terms of rather simple integrals
(Eqs. (78, 84)). The analysis of the asymptotic behavior
of these integrals has clearly shown the importance of the
mirror forces. For example, in the case of similarly charged
particles q = Q = 1 the exponent on the rhs of equa-
tion (85) is half of the value found from the consideration
of the Coulomb repulsion alone.

The results of our calculation clearly demonstrate that
the corrections due to ion–molecule collisions are almost
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independent of the interaction intensity. This effect is ex-
pressed especially clearly in the case of the interaction of
polar molecules with charged particles, where the correc-
tion factor ξ(a) is identical to that for free condensation.

The comparison of the above approach with the ex-
isting experimental data on particle charging in the near
free–molecule regime shows that the first–order calcula-
tions are not enough to take into account the effect re-
lated to diminishing the ion concentration at distances
of the order of the mean free path from the particle com-
pared to the concentration of the ions far from the particle.
Our simple model in Section 6.5 introduces this effect ex-
plicitly. The calculated charging efficiencies satisfactorily
reproduce the existing experimental data.
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